Using reflection! reaction

we extrapolate along straight lines place figure in rout of mirror

the rage is "virtual" - no light passes though it dosenver

1. use $s=$ distance of Deject from mirror
2. put observer anywhere you like
3. daw rays from object to observer using law of election: $\theta_{r}=\theta_{i}$
4. find image distance S^{\prime} by extending rays
convention for distances:
5. $S>0$ means object is on same ride of sum face as incoming light
6. $S^{\prime}>0$ means image is on same side of surface as outgoing light
7. for curved sun laces, radius of curvature $r>0$ if center of curvature is on same side as outgoing light
to mirrors:

light from any point or shiect will rel lect around normal to smitace
\Rightarrow normal goes thu center

To calculate relationship between S, S_{1}, R

$$
\begin{aligned}
& \alpha+\theta+\delta=\pi \text { and } \phi+\delta=\pi \therefore \alpha+\theta=\phi \\
& \phi+\theta+\varepsilon=\pi \text { and } \beta+\varepsilon=\pi \therefore \phi+\theta=\beta
\end{aligned}
$$

subtract: $\alpha-\phi=\phi-\beta \Rightarrow \alpha+\beta=2 \phi$
then: $\tan \beta=\frac{h}{s^{\prime}-a} \quad \tan \phi=\frac{h}{R-a} \quad \tan \alpha=\frac{h}{s-a}$
if we enstriet rays so that α is small, then $a \rightarrow 0$ and α, β, ϕ are all small

$$
\begin{aligned}
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad & \lim _{\theta \rightarrow 0} \sin \theta \sim \theta \\
& \lim _{\theta \rightarrow 0} \cos \theta \sim 1-\theta^{2} l_{2} \sim 1
\end{aligned}
$$

so $\lim _{\theta \rightarrow} \tan \theta=\theta$
this gives $\tan \beta \sim \beta=\frac{h}{s 1}$

$$
\begin{aligned}
& \tan \phi \sim \phi=\frac{h}{R} \\
& \tan a \sim \alpha=\frac{h}{s}
\end{aligned}
$$

next plug into $\alpha+\beta=2 \phi$

$$
\frac{h}{s}+\frac{h}{s^{\prime}}=\frac{2 u}{R}
$$

gives $\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{2}{R}$
this egn is only approximate for small angles
\Rightarrow so make mirrors smaller and all angles will be small. Or make them parabolic!
\uparrow

deviations (nom above equation results in spherical abberations \rightarrow image fluors can be corrected by changing shape f mirror to make above egn exact

Rule for geometric optics:

1. dian ray, from any pt in object, parallel to symetry axis
2. reflect using $\theta_{r}=\theta_{i}$
3. dean ray from same pt thru century curvature - will reflect lack
onto itself
4. intersection is where that point sits on image

Focal point:
if $s \rightarrow \infty$, then $\frac{1}{5} \rightarrow 0$ so $\frac{1}{5^{1}}=\frac{2}{E}$

$$
S^{\prime}=R / 2
$$

this is called "focal point" \rightarrow all object at $s=-4$ produce image at $s^{\prime}=f$ where $f=$ bIz
for spherical mirror, $f=$ focal length

and if works in reverse: any incoming ray thun f will reflect parallel to axis, ont

this allows you to find images easily
Magnification

image is

1. inverted
2. real $\left(S^{\prime}>0\right)$
3. magnification:
nom upper Hiangle: $\tan \theta=h / s$ nom lower " $\tan \theta=h^{\prime} / s^{\prime}$
magnification is $m=\frac{h^{\prime}}{h}=\frac{s^{\prime}}{s}$
since h^{\prime} is <0 (below axis) write

$$
m=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}
$$

Concave mirror w/dbject inside f

1. draw ray coming in thru $f \rightarrow$ goes ont parallel/
2. dray ray parallel to mirror \rightarrow reflects as if it goes out thu f

$$
\frac{1}{s^{1}}+\frac{1}{s}=\frac{1}{f} \Rightarrow \frac{1}{s^{s}}=\frac{1}{f}-\frac{1}{s}=\frac{s-f}{s f}
$$

$s^{\prime}=\frac{1}{\frac{1}{f}-\frac{1}{s}}=\frac{f s}{s-f} \quad \begin{aligned} & \text { since } s<f, s^{\prime}<0 \text { so is } \\ & \text { on other side of mirror }\end{aligned}$ on other side of mirror and image is virtual
(n slight actually goes thu it)

$$
m=-\frac{s^{\prime}}{s}=\frac{f}{s-f}
$$

as you move object closer to focal pt, image gets bigger

Convex mirrors

$$
\frac{1}{s^{1}}=-\frac{1}{f}-\frac{1}{s}=-\frac{(s+f)}{s f}
$$

$s^{\prime}=\frac{-s t}{s+f}<0$ virtual image, behind witter no light goes thun inge
magnification

$$
m=-\frac{s^{\prime}}{s}=\frac{f}{s+f}<1 \text { image smaller than object }
$$

example: concave mirror, $R=10 \mathrm{~cm}, S=8 \mathrm{~cm}$

1. image D the base will be on the hor gonks)
2. " of head using the se 2 ines. Start at head of arrow and so this:
\Rightarrow draw line parallel to mirror \Rightarrow will relief the focal pt $f=R / 2=5 \mathrm{~cm}$

\Rightarrow draw line thu focal pt will diverge parallel (to ∞)
intersection will be where image forms

$$
\begin{aligned}
& \frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{5}-\frac{1}{8}=\frac{3}{40} \Rightarrow s=\frac{40}{3} \mathrm{~cm}=13.3 \mathrm{~cm} \\
& m=-\frac{s^{\prime}}{s}=-\frac{13.3}{8}=-1.66
\end{aligned}
$$

$S^{\prime}>0 \therefore$ image is real
$m<0 \therefore$ image is inverted
note: $\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}$ if $f<s_{,} \frac{1}{s}>\frac{1}{f} \therefore s^{\prime}>0$ real if $S<f$ (object inside focal pt) image win be virtual

Wive seen how mirrors + geometry + law b election allows us to have images w/varions chance feristics.
\Rightarrow can we do the same or something similar wire faction?
Refraction at spherical smface

- ray pom base point P to a point B on surface \Rightarrow makes angle O_{a} wot normal \Rightarrow makes angle α writ horizontal
- ray $\mu\left(r a c t s\right.$, angle θ_{b}, and intersects horizontal af point P^{\prime}
\Rightarrow makes angle β wat horizontal
- normal goer thun center of curvature C and has length R, angle ϕ writ horizontal
- distance of B to horizontal is h $\Rightarrow \delta$ is distance hon base of h to pout R lens
index of refraction n_{a} on object sides n_{b} on outgoing side
\Rightarrow here $n_{b}>n_{a}$
same sign convention as be|re: $Z>0$ if curvature is on outgoing side
just like be for: $\phi=\theta_{s}+\beta$

$$
\theta_{a}=180^{\circ}-\varepsilon \text { and } d+\phi+\varepsilon=180
$$

so $\quad \theta_{a}=\alpha+\phi$
also Goon law of refraction:

$$
n_{a} \sin \theta_{a}=n_{b} \sin \theta_{b}
$$

for "small angles", $\sin \theta \sim \theta$

$$
\text { so } n_{a} \theta_{a}=n_{b} \theta_{b}
$$

also $\tan \alpha=\frac{h}{s+\delta} \quad \tan \beta=\frac{h}{s^{\prime}-\delta} \quad \tan \phi=\frac{h}{R-\delta}$
if angles are small then $\delta \rightarrow 0$ and $\tan \theta \sim \theta$
this gives:

$$
n_{a} \theta_{a}=n_{b} \theta_{b}
$$

$$
\begin{aligned}
& \alpha=\frac{h}{s} \beta=\frac{h}{s^{\prime}} \phi=\frac{h}{R} \\
& \phi=\theta_{b}+\beta \Rightarrow \frac{h}{R}=\theta_{b}+\frac{h}{s 1} \Rightarrow \theta_{b}=\frac{h}{R}-\frac{h}{s^{\prime}} \\
& \theta_{a}=\alpha+\phi \Rightarrow \theta_{a}=\frac{h}{s}+\frac{h}{R} \\
& n_{a} \theta_{a}=h n_{a}\left(\frac{1}{s}+\frac{1}{R}\right)=n_{b} \theta_{b}=h n_{b}\left(\frac{1}{R}-\frac{1}{s^{\prime}}\right)
\end{aligned}
$$

cancel ont h :

$$
\begin{array}{r}
\frac{n_{a}}{S}+\frac{n_{a}}{R}=\frac{n_{b}}{R}-\frac{n_{b}}{S^{\prime}} \\
\frac{n_{a}}{S}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}
\end{array}
$$

This formula is only good for "small angles" Now daw extended object - cays from arrow part

- ray thun center of curvature C goes straight
- ray thur point V is repleted towards normal, which is the horizontal
$\tan \theta_{a}=y / s$ and $\tan \theta_{b}=y^{\prime} / s^{\prime}$
for small angles $\tan \theta=\sin \theta=\theta$

$$
\begin{aligned}
& \text { so } \theta_{a} s=y \text { and } \theta_{b} s^{\prime}=y^{\prime} \\
& m=\frac{-y^{\prime}}{y}=\frac{-s^{\prime} \theta_{b}}{s \theta_{a}}
\end{aligned}
$$

law of re reaction for small angles:

$$
n_{a} \theta_{a}=n_{b} \theta_{b} \text { ค } \frac{\theta_{b}}{\theta_{a}}=\frac{n_{a}}{n_{y}}
$$

so $m=-\frac{s^{\prime}}{s} \frac{\theta_{h}}{\theta_{a}}=\frac{-s^{\prime}}{s} \frac{n_{a}}{n_{b}}$
since s^{\prime} is in region b we can write

$$
m=-\frac{\left(s^{\prime} / n_{b}\right)}{\left(s / n_{a}\right)}
$$

Same convention: $s^{\prime}>0$ real image $s^{\prime}<0$ virtual $m>0$ inverted image
for flat smites, $R=\infty$

$$
\frac{u_{a}}{5}+\frac{n_{n}}{s^{1}}=0
$$

this allows you to image for flat sunfores
ex: $n=1$

object
because of reaction, the light from object is bent away from nor wal when you see it
if pool has depth s, wlobject at bottom, image is formed of depth s^{\prime}.
\Rightarrow if image $s^{\prime}<0$ then image is in water but to use the equations assume image is in air

$$
\frac{1}{s^{\prime}}+\frac{1.33}{s}=0 \Rightarrow s^{\prime}=\frac{-s}{1.33}<0 \text { image is }
$$

virtual : in water
if pool is 2 m deep, $s^{\prime}=\frac{2}{1.33}=1.5 \mathrm{~m}$
\Rightarrow pool is not as deep as it looks!

Imaging thun materials $\rightarrow 2$ surfaces ufindex

equation for rage due to $1 \frac{\Delta t}{}$ surface:

$$
\frac{1}{s_{1}}+\frac{n}{s_{1}^{\prime}}=\frac{n-1}{R_{1}}
$$

the :mage formed by R_{1} sun face becomes the object for R_{2}
note:- that image will not be on incoming side o light!

$$
\frac{n}{s_{2}}+\frac{1}{s_{2}^{\prime}}=\frac{1-n}{R_{2}}
$$

s_{2} is the doject formed by image of smite f_{1} and $s_{2}=-s_{1}^{\prime \prime}$ because that reject is not or the same side as incoming light
2 equations:

$$
\frac{1}{s_{1}}+\frac{n}{s_{1}^{\prime}}=\frac{n-1}{R_{1}}
$$

$$
\frac{n}{s_{2}}+\frac{1}{s_{2}^{\prime}}=-\frac{n}{s_{1}^{\prime}}+\frac{1}{s_{2}^{\prime}}=\frac{1-n}{z_{2}}
$$

we want to know S_{2}^{\prime} so eliminate S_{1}^{\prime} by adding the equations

$$
\frac{1}{S_{1}}+\frac{1}{S_{2}^{\prime}}=\frac{n-1}{R_{1}}+\frac{1 \cdot n}{R_{2}}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

focal pt is as belre: point in optical axis that rays from ∞ converge to
at $s=\infty, s^{\prime}=f$ so $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
this is "lens maker's equ"
thin lens equation: $\frac{1}{5}+\frac{l}{s_{i}}=\frac{1}{p}$
note: focal pt is symmetric for rays hitting from lett or right because it only depends in n and the shape of the 2 surfaces

A more interesting lens:

$R_{1}>0$ but $R_{2}<0$ by convention

So $R_{2}=-\left\lfloor R_{2} \mid\right.$

$$
\begin{aligned}
\frac{1}{f} & =(n-1)\left(\frac{1}{R_{1}}-\frac{1}{\left|R_{2}\right|}\right) \\
& =(n-1)\left(\frac{1}{R_{1}}+\frac{1}{\left|R_{2}\right|}\right)
\end{aligned}
$$

what about this:

$$
\text { so } \frac{1}{f}=(n-1)\left(-\frac{1}{\left|R_{1}\right|}-\frac{1}{R_{2}}\right)=-(n-1)\left(\left.\frac{1}{\left|R_{1}\right|}+\frac{1}{R_{2}} \right\rvert\,\right.
$$

$f<0$ for "diverging" lens

Ray tracing:
1 parallel light is bent then f
2. light thin f is bent parallel
3. light then n cent of lens along optical
axis is unbent
ex: seal image outside f

image is real - light goes then n it! $m=\frac{-s^{\prime}}{s}=\frac{-f}{s-f} \quad$ image is inverted This is a converging lens!
$s<f($ inside $f)$

you can see that as s gets close to f how inside, virtual image is magnified more

Diverging lens: negative focal pt.

image is virtual, $\delta^{\prime}<0$, upright

Diverging lens whobject inside focal pt

no large di (lerence for either side of f Magnification

$m=\frac{y^{\prime}}{y}$ note tan $=y / \mathrm{s}$ on left $=y^{\prime} / s^{\prime}$ on right
so $\frac{y}{s}=\frac{y^{\prime}}{y^{\prime}}$ so $\frac{y^{\prime}}{y^{\prime}}=\frac{s^{\prime}}{3}$
$m=-s^{\prime} / s$ minus sign to denote above or below horizontal axis

Compound lenses

\Rightarrow light goes thun lens 2
let $d=1 \mathrm{~m}$ separate lenses

$$
f_{1}=25 \mathrm{~cm} @ f_{2}=-25 \mathrm{~cm}
$$

$S_{1}=50 \mathrm{~cm}$ from lens 1
1 st image: $\frac{1}{s_{1}^{\prime}}=\frac{1}{f_{1}}-\frac{1}{s}=\frac{s-f_{1}}{s f_{1}}=\frac{50-2 s}{50-25}=\frac{25}{50.25}=\frac{1}{50}$

$$
s_{1}^{\prime}=50 \mathrm{~m}>0 \therefore \text { to aught of leas } 1
$$

and lens: $S_{2}=d-50$ to left of lens 2

$$
=1-50=50 \mathrm{~cm} \text { to left }
$$

$\frac{1}{S_{2}}=\frac{1}{f_{2}}-\frac{1}{S_{2}}=-\frac{1}{25}-\frac{1}{50}=-\frac{3}{50}$
$s_{2}^{\prime}=\frac{-50}{3}=-16.7 \mathrm{~cm}<0 \therefore$
virtual, 167 cm to left f lens 2
magnification $m=\frac{-s^{\prime}}{s}=\frac{50 / 3}{50}=\frac{1}{3}$ smaller!
Lenses, basic usage
put eject at $\infty: \frac{1}{s}=0 \therefore \frac{1}{s^{\prime}}=\frac{1}{f}$ or $s^{\prime}=f$
image is at focal pt
object

as you move object towards lens, image recedes away from f

hing object to focal pt, image is at ∞

$$
\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{f}-\frac{1}{f}=0 \Rightarrow s^{\prime}=\infty
$$

being object inside focal pt, image swings around to object side \& becomes virtual

this is how a magnifier writs

Magnifier
sigh of an object determined by size of the image on retina

muscles attached fo leas modifies the shape to focus objects on the retina which is be hind the lens, assent 2 cm
\Rightarrow this is called "accommodation"
mean point: closest you can bring object to eye and still accommodate \rightarrow focus image on the retina
\Rightarrow at near point, max accommodation \Rightarrow max reshaping lens by eye muscles for most people this is $\sim 25 \mathrm{~cm}$

eye adjusts shape, and f pt, so that image forms on the retina
object subtends angle θ

$$
\tan \theta \sim \theta=\frac{h}{25 \mathrm{~cm}}
$$

and at near point eyes are not seeing parallel object at $\sim \infty$, eyes are \sim parallel 1
object at near point, eyes have to 100 k at angle towards $\Omega_{\text {pet }}$
\Rightarrow this can curse headaches!
Glasses act as magnifiers for close dejects as you age, near point moves outward \Rightarrow would be nice to read and not stain eyes to cross and accommodate too much
note: relaxed eye focal length fr2cm r distance between lens è retina
to accomplish:
\Rightarrow place converging lens between object and eye such that object is at focal pto that lens
θ_{1}^{\prime}

the image will be virtual, at \&, and eye can relax and focus
onto retina.
Image will subtend angle θ^{\prime}

$$
\tan \theta^{\prime}=\theta^{\prime}=n / f
$$

overall angular magnification:

$$
M=\frac{\theta^{\prime}}{\theta}=\frac{h / f}{h / 2 \operatorname{scu}}=\frac{2 \mathrm{scm}}{f}
$$

the smaller the focal length of magnifier, the bigger the magnification the closer you can bling the object
Diopters $D=\frac{1}{f}$ for glasses

$$
\text { eg } \begin{aligned}
D & =1.5 \Rightarrow \text { focal length of } \frac{2}{3} m \sim 2 \mathrm{ft} \\
D & =2.0 \Rightarrow f=\frac{1}{2} m \sim 1.5 \mathrm{ft}
\end{aligned}
$$

lens 1: image for $s_{1}=\infty$ is at f_{1}
lens 2: dist D behind 1, w/ ff f_{2}

$$
S_{2}=-\left(f_{1}-D\right)=D-f_{1} \quad\left(S_{2}<0\right. \text { since it is virtual }
$$

find image for lens 2 :
with respect to (ens 2)

$$
\begin{aligned}
\frac{1}{D-f_{1}}+\frac{1}{S_{2}^{\prime}} & =\frac{1}{f_{2}} \\
\frac{1}{\delta_{2}^{\prime}} & =\frac{1}{f_{2}}+\frac{1}{f_{1}-D}
\end{aligned}
$$

$\operatorname{as} D \rightarrow 0, \frac{1}{s_{2}^{\prime}}=\frac{1}{f_{2}}+\frac{1}{f_{1}}$
as if its 1 leas w/ focal pt $\frac{1}{f_{e q}}=\frac{1}{f_{2}}+\frac{1}{f_{1}}$
or $D_{\text {eq }}=D_{1}+D_{2}$ for lenses, add diopters if they are "on top" of each other
ex: leas 1 has $f_{1}=50 \mathrm{~cm}, f_{2}=75 \mathrm{~cm}$

$$
\begin{aligned}
& D_{1}=\frac{1}{50 \mathrm{~cm}^{2}}=2 \quad D_{2}=\frac{1}{75 \mathrm{~cm}}=1.33 \\
& M_{2}=\left(\begin{array}{l}
\mathrm{Qq}_{2}
\end{array} \quad \begin{array}{l}
D_{e q}=2+1.33=3.33 \\
f_{e q}=\frac{1}{3.33}=0.3 \mathrm{~m}
\end{array}\right.
\end{aligned}
$$

So if you need a magnifier to see fine print, borrow another pair of glasses!

Compound lenses $\rightarrow 2$ lenses
place bjject far away from INt lens called "objective" image will be real, inverted, and "small"

now add "eye piece" converging lens to use objective leas image as object
\Rightarrow this is the "eye piece" leas construct so that objective image is inside Cor at] eyepiece focal point

$$
D \simeq f_{0}+f_{e}
$$

$$
\leftarrow D \rightarrow 1
$$

since the eyepiece object is almost at focal pt, light exits eye piece a parallel and hits your eye
\Rightarrow eye can relax completely final image is on retina at an angle that is magnified (follow yellow lines back wards) This is a telescope?
the eye's lens images the telescope image onto the retina.

final in age is at ∞ and is the object for the eye which images onto retina

$$
\begin{aligned}
& \tan \theta=y / s \quad y=\text { height of deject. for } s>y y_{j} \theta \rightarrow \text { small } \\
& \text { so } \theta=y / s=y^{\prime} / f_{1}
\end{aligned}
$$

image angle is from eyepiece: $\tan \theta^{\prime}=y^{\prime} / s_{2} \quad s_{2}=f=$ object for eyepiece
so $\tan \theta^{\prime} \approx \theta^{\prime}=y^{\prime} / f_{2}$
$M=\frac{\theta^{\prime}}{\theta}$ is the "angular" magnification
\Rightarrow this is the angle subtended by rage (not ratio of heights!)

$$
=\frac{y^{\prime} / f_{2}}{y^{\prime} / f_{1}}=f_{1} / f_{2}
$$

so for telescope want small eyepiece focal pt צ large objective focal pt
note image is inverted so read mirror to invert

Minoscope
here we want the object to be close to the objective, and to ass form an image inside the focal pt of eyepiece:
objective

now place converging lens so
that image is inside f_{2}

${ }^{*}$ final image of eyepiece
eyepiece image is inverted i magnified

$$
m_{o b_{i}}=\frac{h_{i}^{\prime}}{h_{1}}=-\frac{s_{i}^{\prime}}{s_{1}}
$$

overall magnification is \& objective times magnification of eyepiece, which acts like a magnifier w/ $M_{e}=\frac{25 \mathrm{~cm}}{f_{e}}$

$$
M=M_{\text {oh j }} \cdot M_{\text {cue }}=\frac{s_{1}^{\prime} \cdot 25 \mathrm{~cm}}{s_{1} \cdot f_{e}}
$$

usually $s_{1} \sim f_{0}$ so $M=s_{1}^{\prime} \cdot 25 / f_{0} f_{e}$

